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The relationship between cross sections and the strength function is discussed. The usually used simple 
linear relation is shown to be an approximation to the more general theory of Wigner and Eisenbud. With 
this theory, a consistent and simple behavior of the strength function with respect to the energy and the 
atomic weight can be obtained. The problems of the proper choice of the boundary condition and the matching 
radius for the diffuse well are discussed. A quantitative estimate of the effect of the nonlinear terms in a 
typical nucleus Nb93 is presented. 

I. INTRODUCTION 

TH E optical model has been very successful in ex
plaining the behavior of low-energy nucleons 

scattered by complex nuclei (e.g., the average resonance 
cross sections of neutrons). Many theories1-5 have been 
formulated in the past to express the average cross 
sections in terms of some energy-independent (over a 
limited energy range) parameters like the strength 
function. These theories are called resonance theories. 
There also have been attempts to indicate the connec
tion between the two, i.e., between the optical model 
and the resonance theories3; however, an exact cor
respondence between the two has not been checked. In 
addition, because of the many resonance theories and 
their modified versions available today, it is not appar
ently clear which one of them to choose. The most 
recent of these theories are by Moldauer4 and Feshbach.5 

So far, their widest use has been in interpreting the low-
energy s-wave neutron interactions where all these 
theories become identical. However, with the improve
ment in experimental techniques, ^-wave neutron-

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

*E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947); 
see also the review article by A. M. Lane and R. G. Thomas, Rev. 
Mod. Phys. 30, 257 (1958). 

2 P. L. Kapur and R. E. Peierls, Proc. Roy. Soc. (London) 
A166, 277 (1938). 

3 H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev. 
96, 448 (1954). 

4 P. A. Moldauer, Phys. Rev. 129, 754 (1963). 
5 H. Feshbach, Nuclear Spectroscopy, edited by F. Ajzenberg-

Selove (Academic Press Inc., New York, 1960), Part B, p. 1038. 

interaction information is becoming available.6-9 Since 
this requires reasonably high energies, ~ 1 to 500 keV, 
the detailed form of the cross section versus strength-
function relation is needed in order to evaluate quanti
ties like p-w&ve strength functions from the experi
mentally observed total and partial cross sections. 

In Ref s. 6-9, a conventional linear relation is assumed 
between the average compound nucleus cross section 
and strength function, even though measurements are 
carried out in the hundreds of kilovolt range. These 
strength functions are then compared with those ob
tained from the low-energy (<10 keV) optical-model 
calculations.10 Therefore, the parameterizations of cross 
section by the energy-independent quantities (over a 
limited range), so-called strength functions, should be 
such so as to be consistent with the optical model. 

In the present paper it is shown that the conventional 
simple linear relationship does not hold at high energies 
(>20 keV). Therefore, the author feels that theoretical 
and experimental quantities are not alike and may lead 
to wrong conclusions (like the strength of spin-orbit 
coupling). Besides, one measures the sum contributions 
of s and p wave in the measurements when the p-w&ve 

6 J. H. Gibbons, R. L. Macklin, P. D. Miller, and J. H. Neiler, 
Phys. Rev. 122, 182 (1961). 

7 L. W. Weston, K. K. Seth, E. G. Bilpuch, and H. W. Newson, 
Ann. Phys. (N. Y.) 10, 477 (1960). 

8 C. A. Uttley and R. H. Jones, Proceedings of the Symposium 
on Neutron Time-of-Flight Methods (Saclay, France, July 1961), p. 
109. 

9 K. K. Seth, R. H. Tabony, E. G. Bilpuch, and H. W. Newson, 
Bull. Am. Phys. Soc. 8, 120 (1963). 

1(>T. K. Krueger and B. Margolis, Nucl. Phys. 28, 578 (1961). 
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FIG. 1. The 5-wave neutron strength function (Tn°)/D versus 
atomic weight. Curve 1 is calculated for a square-well optical-
model potential with parameters: Fo=52 MeV, W = 1.56 MeV, 
R=1.25AVK Curve 2 is the {Tn

Q)/D calculated using Eq. (4) and 
the relation (rn°>/Z?=jR5'oX 10^/0.2276. 

contribution is appreciable. Because of a different energy 
dependence of nonlinear terms, it is difficult to find the 
errors involved, due to the use of a simple linear relation
ship. There are also disagreements between the various 
theoretical results.1"3'5'11 In addition, these deductions 
are strictly valid for a square-well potential, while the 
measured strength functions are presently compared 
with the diffuse surface potential. 

Lane and Lynn12 and Seth13 have tried to indicate the 
presence of nonlinear terms in s-wave neutron inter
actions by a square-well complex potential. However, 
it is not clear from their work why the conventional 
linear relation is incorrect. Moreover, the effect for 
higher partial waves and for the diffuse potential is still 
an unsolved problem. 

Therefore, the present work was carried out to find a 
relation between the cross section and the strength 
function such that its energy dependence (for fixed 
values of strength function) agrees with that obtained 
from the optical model. Later a discussion of a reason
able choice of boundary condition Bt and the matching 
radius R for deducing the strength function from the 
cross section represented by a diffuse potential is given. 
In the last section the effect of the nonlinear terms on the 
2>-wave strength function from the measured total cross 
sections in a typical nucleus Nb93 is presented. 

11 K. B. Mather and P. Swan, Nuclear Scattering (Cambridge 
University Press, London, 1958), p. 425. 

12 A. M. Lane and J. E. Lynn, Atomic Energy Research 
Establishment Report No. T/R 2210 (unpublished). 

13 K. K. Seth, Rev. Mod. Phys. 30, 442 (1958); see also K. K. 
Seth, Can. J. Phys. 37, 1199 (1959). 

H. THE SQUARE-WELL POTENTIAL 

It is easy to see1-14 that for a square-well complex 
potential the strength function Si and the distant level 
parameter R^1 for any partial-wave / satisfy the 
relations: 

yx*W 
T 5 | = - ; , (1) 

R« 

(Ex-E)2+W2 

Tx2(£x-£) 

(Ex-E)2+W2: (2) 

where y\2=h2/mR2 is the single-particle width, W=im
aginary part of the potential, E\=energy of the giant 
resonance, E=energy of the particle, R=nuclear radius, 
m=mass of the incident particle. Note that the above is 
true only for an isolated giant resonance X. 

For low-energy neutrons it is easy to see that the 
compound nucleus cross section for the Ith partial wave 
is given by 

(7 C
Z ~(2^1)4TT 2 X 2 PA, (3) 

where Pi is the neutron penetrability. This is in no real 
disagreement among various formulations.1-5 The differ
ent formulations, however, disagree in their higher order 
terms which become important only at high energies and 
near the peaks of the giant resonances. It is easy to verify 
that the above formula (3) is quite accurate for neutrons 
below a keV for the imaginary part of the optical-model 
potential of about 3 MeV or more. 

We first verify that (1) satisfies the optical model. For 
this purpose we use the important property of the 
optical model that for a fixed W the logarithmic deriva
tive at the surface depends only on the product KR 
where K is the wave number of the neutron inside the 
nucleus and R the radius of the target nucleus.3 This 
implies that (1) and (2) which exhibit giant-resonance 
character with respect to energy for a fixed radius can 
be converted into the ones which show resonance be
havior with respect to R for a fixed energy, by the 
substitution K\R = KR\. R\ is the radius at resonance 
for the case when resonance is obtained by varying 
R (by changing atomic weight) keeping energy fixed. 
[This argument holds, strictly speaking, for a square 
well with a real potential. For the diffuse wells treated 
here, we expect that Eq. (4) below is a good approxima
tion so long as F(£>>IF.] Therefore, for low-energy 
(E<<CFo), (1) can be written as 

irSx 
yx2W 

V<?ll-Rx2/R2J+W2 
(4) 

where F0 and W are the real and imagniary parts of the 
potential. This expression allows us to calculate the 
strength-function giant resonance as a function of the 
atomic weight or radius for a fixed energy of the incident 

14 A. P. Jain, Ph.D. thesis, Cornell University, 1962 
(unpublished). 
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TABLE I. The calculated values of RJ and yS0 for three values of atomic weights: A = 60 below the resonance peak, 
A = 64 at the peak of the resonance, and A = 68 after the peak of the resonance. 

E (keV) 

1 
501 

,4=60 
Correct 

( ,. .A . ^ 

RJ> irSQ 

0.535 0.389 
0.565 0.528 

Linear 
approx. 

TTSQ 

0.379 
0.248 

A = 64 (res. 
Correct 

-0.106 1.067 
-0.377 0.918 

peak) 
Linear 
approx. 

TTSQ 

0.995 
0.308 

.4=68 
Correct 

RJ> *SQ 

-0.467 0.337 
-0.426 0.255 

Linear 

approx. 
TTS0 

0.329 
0.164 

particle in terms of the position of the peak. We can also 
calculate crc

l from the optical model for a particular set 
of parameters for the various values of atomic weights 
at a neutron energy of, say, 1 keV. Si can then be deter
mined using (3). Figure 1 (curve 1) shows So (for $ wave) 
as calculated using the ABACUS code16 for a square-well 
potential and the expression (3). For the sake of con
venience we plot a more conventional strength func
tion (Tn

l)/D which is related to Si by the relation 
Si= (0.2276)R-1((Tn

l)/D)X10\ (Tn
l) is the average re

duced neutron width and D, the average level spacing. 
From (4) we also calculate Si for the value of A\ 
(where R\~rQA\llz) as obtained by the ABACUS code 
and W that used in the ABACUS. This is shown by the 
dotted line (curve 2) in Fig. 1. A good agreement be
tween the two curves indicates the validity of (1) and 
(2). Similar agreement is found to hold for p waves. 
The departures in the wings of the resonance arise 
because (1) and (2) are single-level formulas and in the 
wings the contribution from nearby giant resonances 
becomes important. It must be emphasized that this 
conclusion is independent of the form of the higher 
order terms in (3) because at 1 keV, or below, the higher 
order contribution is small for not too low values of W. 

Now we show that the Lane and Thomas formulation1 

of the resonance theory with properly chosen boundary 
condition is the most correct expression of cross section 
as a function of strength function. 

The cross sections can be written as 

crc^7rX2(2/+l)rz=7rX2(2/+l)(l- |^|2), (5) 

ase
l==T\2(2l+l)\l-m\K (6) 

The average collision function rji is given by1 

m= 
p—2i<pl 

" 1 

Ri 

1 
! — 

i*. 

-£,*; 

-u 
J 

(7) 

where 
Ri=RJ+iTrSh 

ti=At+iPi, 

Ai=Ar-Si . 

(8) 

(9) 

(10) 

<pz=the hard-sphere phase shift, RJ=the distant level 
parameter, Sz=the strength function, Aj=the shift 
factor, J3j=the boundary condition parameter, Pj=the 
penetration factor. 

For the time being let us assume that Bi=—I. It will 
be shown later on that this is the only reasonable choice 
for the boundary condition. 

From (7) the compound nucleus cross section for the 
Zth partial wave can be found to be 

4TT 2 X 2 PA(2/+1) 

(l-AtRJ+TrPiSiY+i&nrSi+PiRJ)2 (ID 

16 E. Auerbach (private communication), ABACUS 2, a gen
eral purpose optical-model code. 

It is easy to verify that for the boundary condition 
chosen, (11) reduces to (3) in the low-energy limit. 

7ji can also be calculated using some optical-model 
parameters like VQ, W, R, and a, at various energies 
for a particular radius. Using (7), one can then find 
Ri (i.e., its real and imaginary parts, RJ and irSi) 
at any energy. We now show that these quantities 
show a variation as expected from (1) and (2). Table I 
shows RJ and wSl for a square-well optical-model poten
tial in the range of neutron energy from 1 to 501 keV 
near the s-wave maximum. The parameters of the 
potential well are F0=52 MeV, W=1.56 MeV, and 
#=1.25 AllzF. The calculations are performed for 
three values of A, one on the resonance and the other 
two at about half-max, one below and the other above 
the resonance for the s-wave neutrons. It should be 
noted that the sign and magnitude of RJ is consistent 
with (1) and (2), its magnitude being positive below 
the resonance and negative above the resonance. More
over, the relative variation in these quantities as a 
function of energy is also of the right order of mangitude 
as expected from (1) and (2) and so also is the sign 
of the variation. For s-wave neutrons A0=0, therefore, 
essentially we test the contributions of the higher order 
terms in Si in (11). Also shown are the strength 
functions assuming (3), called the linear approximation. 

Table II shows the calculation for the same set of 
parameters, but near the ^-wave maximum. It is easy 
to verify that the essential contribution of the next 
higher order term here is due to RjAi, the effect of 
vPiSi being small for energies below \ MeV. Again, we 
see that RJ and irSi behave as expected from (1) and 
(2). On the other hand the strength function obtained, 
assuming (3) alone, changes rapidly, depending upon 
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TABLEAU. The calculated values of RJ and TTSI for three values of atomic weights: A = 104 below the resonance, 
A = 110 at the resonance peak, and 4̂ = 114 after the peak of the resonance. 

.4 = 104 ,4 = 110 (res. peak) -4 = 114 
Correct Linear Correct Linear Correct Linear 

t A \ approx. / A ^ approx. / A <* approx. 
E (keV) RJ> xSi TTSI RJ> irSi TTSI RJ TSI TTSI 

1 0.399 0.365 0.365 -0.129 0.720 0.720 -0.343 0.370 0.370 
501 0.386 0.497 0.413 -0.287 0.590 0.315 -0.328 0.272 0.168 

whether one is below or above the resonance energy. 
Figure 2 shows the irSo and RJ for A = 60 for the same 

parameters as in Fig. 1, as a function of energy from 
1 keV to 6 MeV. First the amplitudes rjo are calculated 
using the optical-model parameters, and next WSQ and 
RJ* are evaluated for each energy using (7). The full 
width at half-maximum of curve 1 is 3.12 MeV, as 
expected from (1). I t is easy to verify that the agree
ment of curves 1 and 2 with that expected from (1) and 
(2) is very good even up to a few MeV. Similar results 
are obtained for a nucleus near the ^>-wave maximum. 

This establishes the contribution of the higher order 
terms in (rn)/D=2wPiSi and also in the distant level 
parameter R^1 for p waves, not included by Feshbach5 

in his latest work and missed in the evaluation of ^>-wave 
strength functions from the experimentally measured 
capture6,7 and total8 cross sections in the kilovolt range. 
The use of (3) rather than (11) in the evaluation of 

o 1 1 K H 1 r 
0.6 i-

0.4 

0.2 h \ 

°a:9 0 1 f -UH r 

-0.2 U \ 

-0.4 

- W . D • • • • • • • ' 

0 1 2 3 4 5 6 
E IN MeV 

FIG. 2. The strength function TTSQ and the distant level term 
R«P as a function of energy from 1 keV to 6 MeV for a nucleus 
with A — 60. The calculations are for a square-well potential with 
parameters VQ = 52 MeV, W = 1.56 MeV, R=1.25A^. 

strength functions from the known cross sections in the 
kilovolt range will provide results which will vary 
rapidly and erratically with atomic weights and energy, 
unlike the simple variation given by (1) and (2) which 
provides a smooth variation in a known manner. I t also 
demonstrates that it is incorrect to write the higher 
order terms as 

c r c ^(2 z +l)7rX 2 ( l -e - 4 7 r P ^0 
= (2H-l)7rX2(l-e-2-< r»>^), 

where ( r n ) is the average neutron width, and D is the 
average level spacing, as speculated by many people. 

Moldauer,4 in his latest work, does rederive (7) with
out using the usual channel elimination method, but 
assumes that Bi=Ai for all partial waves. Such a 
boundary condition is objectionable because it is energy-
dependent. In the energy range of p-w&ve strength-
function measurements (0 to ~ f MeV) from the meas
ured average cross sections, the change in Bi, for ex
ample, is not negligible. The condition Bt=Ai may be 
reasonable if one wants to analyze a narrow Breit-
Wigner resonance but not when one analyzes average 
cross sections over a several hundred kilovolt range. 
We will now show that Bi=—l is the only boundary 
condition that is a reasonable one. This will be illustrated 
by an example using ^-wave neutrons. 

For p-w&ve neutrons, Ai= —T/(l+p 2) . With our 
choice of Bh Ai=p 2 / ( l+p 2 ) , where p=kR, k being the 
wave number of the neutron outside the nucleus and R 
the radius. The boundary conditionB t— —/satisfies the 
criterion that in the low-energy limit (p—>0), (5) 
reduces to (3). However, since B\ has to be energy-
independent, it is easy to verify from (9) that no other 
choice of Bi can satisfy this condition. In general, for 
any partial-wave /, for Bi=—l, Az=Az— Bi is zero in 
the low-energy limit. Therefore, (3) holds for all partial 
waves in the low-energy limit. In addition, the simple 
Eqs. (1) and (2) were derived14 with the boundary con
dition Bi=—l. For any other condition, the TSI and 
Re,1 are complicated functions of the real part of the 
optical-model potential, the radius, and the angular 
momentum /. Moreover, the conventional linear relation 
between the average compound nucleus cross section 
and strength function (for all partial waves) is lost even 
in the low-energy limit, in case any other energy-
independent choice for B\ is assumed; i.e., A j ( E = 0 ) ^ 0 
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FIG. 3. The 5-wave neutron strength function {Tn°)/D versus 
atomic weight. Curve 1 is for a diffuse Eckart potential with 
parameters VQ = S2 MeV, W=L56 MeV, a=0.52 F, £=1.25 
A1'* F. Curve 2 is the (Tn°)/D calculated using Eq. (4) and the 
relation <rn

0}/Z) = i?SoX10-4/0.2276. This curve is normalized 
to the curve 1 at the peak. 

means, according to (11), that there will be a factor 
[_(l-&iRO0

l)2+(&nrSi)2~] in the denominator. It is for 
all of these reasons that a boundary condition Bi——l 
is preferred over any other. 

III. THE DIFFUSE POTENTIAL 

We have shown above the connection between the 
Wigner-Eisenbud resonance theory and the square-well 
optical-model potential. However, from a study of s-
wave strength functions, Hughes et a/.16 have demon
strated that the potential is diffuse, like the Eckart type 
(V0+iW)/(l+exp(r-R)/a). Vogt 17-18 has shown that 
even for the Eckart type of potential, (7) and (11), 
which were proved to hold for square well, still hold 
provided Az and Pi are changed to &iC(a) and PiC(a), 
respectively, where C(a) is a constant, depending only 
on the diffuseness a of the potential. From (7) it is 
easy to see that this is equivalent to changing Rh or 
R*>i and wSi by C(a) and leaving &i and Pi unchanged. 
Therefore, if one redefines the RJ and wSi as RJC{a) 
and 7rSiC(a)y then (7) and (11) are still valid with the 
square-well penetrability Pi and the shift factor Aj. 
The corresponding Eqs. (1) and (2) should then also 
remain unchanged except by a constant factor C(a). 
We will show that the form of Eqs. (1) and (2) depends 

16 D. J. Hughes, R. L. Zimmerman, and R. E. Chrien, Phys. 
Rev. Letters 1, 461 (1958). 

17 E. Vogt, Phys. Letters 1, 84 (1962). 
18 E. Vogt, Rev. Mod. Phys. 34, 723 (1962). 

considerably on the matching point R for a diffuse 
potential. 

Figure 3 shows the calculations which are the same 
as those described in Fig. 1, but for a diffuse Eckart 
potential of diffuseness 0.52 F at a neutron energy of 
1 keV. The matching point is taken as R, the half fall-
off distance of the potential. The dotted curve which is 
calculated using (4) is normalized to the solid curve at 
the peak to remove the effect of the unknown factor 
C{a) in (1). We notice that the dotted curve has a 
smaller width at half-max than the solid curve. The 
same effect is observed for the corresponding p-w&ve 
calculations. 

Figure 4 shows the calculations of (Vn°)/D for an 
atomic weight A = 50 for the same parameters as above 
as a function of energy from 1 keV to 6 MeV, for three 
values of matching radius R, R+%a, and R+%a, where 
R is the half fall-off distance of the potential and a the 
diffuseness. For all these calculations the amplitude 
rjo is evaluated using the ABACUS code and then (Tn°)/D 
evaluated using (7) for the above three values of the 
matching radius. First, all three curves coincide at the 
lowest energy as they should, because at sufficiently 
low energy ac°cc{Tn°)/D and the R dependence is can
celled out. We notice that for the matching radius or 
boundary at R (curve 1), the full width at half-max of 
the curve is about 6.9 MeV. The curve is also asym
metrical about the peak. This is in contrast to what we 
found for the square-well case; the full width at half-

! j j j j j r 

A=50 
V0=52 MeV I-BOUNDARY AT R 
W= 1.56 MeV 2-BOUNDARY AT(R + 2 /3a) 
a = . 5 2 F 3- BOUNDARY AT (R+4/3 a) 
R = I.25A I / 3 F 

FIG. 4. The S-wave neutron strength functions {Yn°)/D versus 
energy from 1 keV to 6 MeV for A = 50. For all the three curves, 
the phase shifts are evaluated for an Eckart potential with 
parameters F0 = 52 MeV, 1^ = 1.56 MeV, a = 0.52 F, and R= 1.25 
Am Y'(Tn°}/D in curves 1, 2, and 3 are evaluated for three values 
of matching radius R, R+la and R+ia, respectively, in Eq. 
(8). 
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FIG. 5. The dots represent the total cross section of Nb93 

(Ref. 14) in the range of neutron energies 10 to 100 keV. The 
solid lines are the Eckart potential calculations with radius 
i? = 1.25 AW F and diffuseness a = 0.52 F. The solid curves 1 
and 2 are for the two best-fit parameters with Vo and W as 
(50.7, 2.38) and (54.8, 2.10) MeV, respectively. 

maximum of curve 1, Fig. 2, is 3.12 MeV. However, this 
width and asymmetry decrease as the boundary is 
moved further out. For the boundary R+%a, the full 
width is already about 3.1 MeV, very close to the ex
pected value of Eq. (1) of 2W=3A2 MeV. Similar 
results are obtained in the case of >̂-wave strength 
functions. It is, therefore, concluded that a matching 
radius of about R+^a gives more consistent results 
than the radius R. 

IV. p-WAVE STRENGTH FUNCTION 

Recently, considerable interest has arisen in find
ing ^-wave strength functions from the measured 
capture6,7 and total cross sections.8-9-14 Most of the 
earlier workers6-8 have used a linear approximation 
[see Eq. (3)] between the compound nucleus cross 
section and the strength function for all partial waves. 
In addition, the shape elastic part of the cross section 
has been assumed to behave as assumed in Ref. 3, 
which can be seen from (7) to hold only in the low-energy 
limit. In this section a quantitative evaluation of the 
nonlinear terms in a practical case of Nb93, which is near 
the ^-wavs giant resonance maximum, is presented. 

Figure 5 shows the experimental data14 for the total 
cross section of Nb93 in the range of 10 to 100 keV. Also 
shown are the Eckart potential calculations with radius 
R= 1.25AVW and a=0.52F. Curves 1 and 2 are for the 
two best-fit parameters with Vo and W as (50.7, 2.38) 
and (54.8, 2.10) MeV, respectively (the other parame
ters are kept fixed). These parameters are about the 
same as used by Campbell et a/.19 Both curves are 
approximately alike and are difficult to distinguish even 
with very accurate data (~2 to 3%) in the 10- to 
100-keV range. Figure 6 (curves 1 and 2) shows the 

>̂-wave compound nucleus cross section a} calculated, 
using the same parameters as in curves 1 and 2, respec
tively, of Fig. 5. The cross section is plotted against 
l/(E(eV)y>2- (k2R2/k2R2+l). This is the conventional 
penetrability for the ^-wave neutrons. If the linear ap
proximation were valid, then both the curves 1 and 2 
should follow a straight line passing through the origin. 
The departure from straight lines is a measure of the 
nonlinear effect. The departure at 100 keV is about 12% 
for curve 1 and 42% for curve 2. Notice that this depar
ture is in the opposite direction from the straight line in 
the two cases. This is because of the finite contribution 
of the distant level term R^1 which assumes equal and 
opposite value on the two sides of the giant resonance 
[Eq. (2)]. Similar departures can be seen in the shape 
elastic cross section which has to be added to the com
pound nucleus cross section to calculate the total cross 
section. An even larger effect is observed for the nucleus 
for which a smaller W is needed to fit the experimental 
data. In (9) the largest contributing term that depends 
on R^1 is AiR^1 in the denominator. The fact that the 
nonlinear terms are of opposite sign confirms that Aj = 0 
for 1^0 is not a good boundary condition even over a 
range of 100 keV and that the distant level term cannot 
be ignored in the compound nucleus cross section. Such 
terms cannot be obtained by the average of a one level 
Breit-Wigner formula, as done in Ref. 3. A multilevel 
average, including the effect of distant levels, as per-

19 E. J. Campbell, H. Feshbach, C. E. Porter, and V. F. Weiss-
kopf, Tech. Rep. 73, 1960 (unpublished). 

FIG. 6. The calculated P-wave compound nucleus cross section 
for the parameters of Fig. 5 in the range of 10 to 100 keV of 
neutron energy. Curves 1 and 2 are for the values of Vo and W 
as (50.7, 2.38) MeV and (54.8, 2.10), respectively. The solid 
lines are the calculated curves and the dotted lines are the extra
polations from low energy, assuming a straight line behavior. 
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formed by Lane and Thomas in Ref. 1, can give rise to 
such terms. 

The p-wsiwe strength functions (in units of 10~4) 
corresponding to curves 1 and 2 of Fig. 6, calculated 
from the slope of the curves in the low-energy limit, 
are 5.41 and 9.76, respectively. This shows that with 
the proper inclusion of the higher order terms one gets 
two values of ^>-wave strength functions, differing by 
about 80% in this case. 

Nb93 falls at about half-maximum on the ^>-wave giant 
resonance curve for the parameters chosen. The ^>-wave 
contribution dominates the total cross section at 
energies of interest. The p-w&ve giant resonance being 
symmetrical about the center, one can get two values of 
VQ (other parameters being kept fixed) which will give 
the same total cross section at a fixed nuetron energy, 
if there is no contribution due to R^h The ^>-wave 
strength function or the compound nucleus cross section 
for the two cases will be the same. On the other hand, 
because of the comparatively large contribution of R^1 

near the half-maximum of the resonance curve, one gets 
two pairs of values of the p-w&ve strength function and 
R^1 giving almost the same total cross section. 

There are two sets of parameters that fit the data if 
only VQ and W are varied and other parameters are 
kept fixed. If other parameters like R and a are also 
varied, then one can get other fits as well, which cor
respond to different values of the strength function 
RJ. The effect, in general, depends on the atomic weight 
and increases rapidly with increasing energy. 

V. CONCLUSION 

I t is shown that the simple linear relation between the 
compound nucleus cross section and the strength func-

R E S O N A N C E T H E O R Y B7 

tion is the low-energy approximation to the more general 
formulation of Wigner and Eisenbud, as presented by 
Lane and Thomas. Such an approximation may not be 
valid near the giant resonance maxima and at high 
energies (>30 keV). In the calculation of Refs. 3 and 
5 the approximate result is thought to be due to in
adequate treatment of the average of the distant and 
nearby levels. 

The boundary condition parameter Bi= — I is shown 
to give the most reasonable form of the strength func
tions. For a diffuse potential of the Eckart form, the 
Lane and Thomas formulation can still be carried out 
even at high energies provided the matching radius is 
taken as about R+(%)a, where R is the half fall-off 
point of the potential and a the diffuseness. 

Even up to 100 keV the contribution of the nonlinear 
terms (including the distant level effect) in the ^-wave 
compound nucleus cross sections are as much as 40% in 
the case of Nb93. Because of the nonlinearity it is diffi
cult to find a unique solution for the p-w&ve strength 
functions. There are two and only two values for a given 
radius and diffuseness. These values differ by about 80% 
in the case of Nb93 and correspond to values of RJ which 
differ in sign. The effect will, in general, depend on the 
atomic weight and is a rapidly increasing function of 
energy. 
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